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Abstract 

 

This paper presents theoretical models and simulation results for performance of a 

multiprocessor network modeled as a ring and as a two-dimension wraparound square lattice 

of nodes with local processors that generate messages with constant rate per time slot. The 

buffers can hold a limited number of messages. Explicit theoretical results based on first-

order (independent queues) and second-order approximation of the queue distributions are 

obtained for small buffers sizes (1 and 2). For larger buffers the problem appears analytically 

intractable, and has been studied by simulations. The average queue lengths and average 

latency are obtained. The results show that the model of independent queues, which is valid 

for networks with infinite buffers, is still applicable for small generation rates, but breaks 

down for larger loads, which violates the Jackson theorem. 

 

1. Introduction 
 

Over the last several decades the efforts of many researchers were focused on analyzing 

computer communication networks as networks of queues. Most of the early important 

results have been obtained for networks with infinite buffers. However, this assumption in 

many cases does not adequately depict real networks. In practice, buffers are finite, and 

sometimes quite small. There is a rise of interest in the performance of the networks with 

small buffers in recent years. Analysis showed [1-4] that increase in buffer size does not 

improve the performance in wormhole routing significantly. Moreover, latest research [5-11] 

proved that use of smaller buffers does not decrease the link utilization for Internet routers. In 

interconnection networks, buffer depth of 5 packets had been shown to offer optimal 

performance for optical packet-switched clockwork routing [12]. Buffers of size 1, 2, and 50  

messages have been considered in [13]. Larger buffers (sizes 5,10, 20,30,40, and 50) have 

been studied in [14]. The use of smaller buffer sizes gives some advantage in speed and 

provides possibilities to use SRAM or OPS (Optical Packet Switching). Therefore it is very 

important to study such networks, in spite of analytical difficulties this may present. 

 

In this paper we consider several models of networks with different size of buffers, starting 

with size 1 (only one message can be kept in a buffer). In general, theoretical analysis of such 

networks is a very challenging problem. Though the independent queues assumption is not 

expected to give an accurate description of the performance of networks with finite buffers, it 

still makes sense to analyze the networks in terms of the first-order probability distributions 

(as if the queues were independent). In order to reflect better the correlations between nodes, 
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the second-order probabilities (i.e. joint probabilities of two neighboring nodes) have been 

obtained for certain models. Comparison with simulation results show that both the first-

order probabilities, and, especially, the second-order distributions yield a reasonably good 

description of the system behavior until the load reaches the critical region. The simulation 

results show that when the load approaches the critical value, the system behavior displays 

typical patterns of long-range dependences between nodes, on the scale much exceeding the 

“interaction radius” (the distance between the source and destination). The network 

performance near the critical point is beyond the framework of Jackson theorem [15]; rather 

it is similar to the critical phenomena in systems described by statistical physics. Both 

second-order and first-order phase transitions have been observed in networks with finite 

buffers. Fluctuations with very large amplitudes, slowly changing in time, and instabilities in 

critical region are characteristic features of the network behavior. 

 

All models considered below have the following common properties: 

1. All nodes in the network are both the routers and hosts: every node can generate and 

receive messages as well as store and send further passing messages. 

2. Time is discrete: all nodes simultaneously send, receive and generate messages within 

every time slot. 

3. Each node generates at most one message per output port within every time slot with a 

certain probability. This probability may depend on the state of the node (the number of 

messages in the local output port). 

4. Destination of a message is selected with equal probabilities among the nodes at exact 

distance l from the source. 

5. Service time is deterministic (therefore, it does not have a rational Laplace transform). In 

the absence of queues, a message received or generated during a time slot will appear at 

the next node in the next time slot. 

6. If possible, a message (if there is one) is sent from the output port to the neighboring 

node at every time slot. This depends on the number of messages in the output port (for 

the ring topology), or in the router (for the torus topology) in the next (neighboring) node. 

 

In the case of limited buffers, the next state of a buffer depends not only on its previous state 

(as in the case of infinite buffers), but also on the previous state of its neighbor. 

  

The difference of our work from previous studies [16-18] is in particular, the choice of model 

features such as discrete time and deterministic service time. While some features of our 

models are similar to those used by others [19], no model to-date has incorporated all of 

them. We believe that the combination of properties as described above, makes our model 

closer to a real supercomputer network, though sometimes hard for theoretical analysis. 

Choice of the deterministic service time implies that in our model the service time does not 

have a rational Laplace transform. 

  

Section 2 deals with ring topology networks. The buffer capacities m = 1 and m = 2 is chosen 

for the theoretical model in order to obtain explicit analytical expressions for the steady-state 

probabilities (first-order probability distribution) of the states and the average queue length in 

the “mean field” theory similar to that in statistical physics.  Explicit expressions for the 

second-order distributions have been also obtained. Experimental results based on simulation 



Proceedings of the 2016 IAJC-ISAM  Joint International Conference 
ISBN 978-1-60643-379-9 

 

 

have been obtained for the ring length of 500 routers and the distance between source and 

destination l = 5 hops. 

  

Section 3 provides experimental results for 16×16 toroidal square lattice and l = 5 hops. 

 

2. Ring Topology 
 

2.1. Buffer Limit m=1 

  

In the case of buffer size m = 1, we assume that a node does not accept messages and does 

not generate messages when the number of messages in a buffer n = 1. If at the beginning of 

a time slot a node was in state 0 and then received an incoming message that was not 

consumed, it does not generate any new message. 

 

2.1.1. First-order probability distribution 

  

Under the assumption of independent queues, the queue state transitions form a simple two 

state Markov chain and from balance equation p0p01= p1p10= (1- p0) p10 we obtain  
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Here λ is the “nominal” probability that a message is generated by a node within one time 

interval, n is the average number of messages in a buffer, and τ is the average latency.  The 

“actual” generation rate λact in all our models with finite buffers is different from the 

“nominal” value λ. Indeed, in the model with m=1, a new message can be generated in state 0 

only if no passing massage has arrived, and in state 1 only if the message kept in the output 

buffer has been sent to the next node. A calculation shows that in the first-order 

approximation the actual generation rate is 
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2.1.2. Second-order probability distribution 
 
For two neighboring nodes and their combined states the Markov chain has 4 states. After 
solving the system of balance equations for this Markov chain we obtain 
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2.1.3. Experimental results
 

Figure 1.  The queue length 

order approximation )1(
n (1); green dashed line: the second order approximation 

line with bullets: experimental data; orange dotted line: theor

The values of n  from simulation together with theoretical approximations 

shown in Figure 1. One can see that second order theoretica

approximation, provides much better prediction of the network behavior for small network 

loads (up to λ ≈ 0.7λcrit). It also can be seen that the second order analysis results in better 

approximation of the real critical point: second order 

0.1667. The interesting observation is that the network performs better than theory 

independent queues predicts. Paradoxically, the first
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Experimental results 

 
 

.  The queue length n  as a function of the network load λ. Red solid line: the first 

(1); green dashed line: the second order approximation 

line with bullets: experimental data; orange dotted line: theoretical values for infinite buffers 

given by (5). 

  

from simulation together with theoretical approximations n

1. One can see that second order theoretical analysis, compared to first order 

approximation, provides much better prediction of the network behavior for small network 

). It also can be seen that the second order analysis results in better 

approximation of the real critical point: second order λ(2)
crit = 0.1435 vs. first order 

. The interesting observation is that the network performs better than theory 

independent queues predicts. Paradoxically, the first-order approximation gives an upper

Probability of message generation λ 

Conference 

               (4) 

infinite buffers are 

             (5) 
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. Red solid line: the first 

(1); green dashed line: the second order approximation )2(
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bound on n  for small network loads when the probability of message generation λ < 0.8λcrit 

while the second-order approximation provides a lower bound on n  for all λ.  

 

The empirical value of the latency τ, its analytical approximation )1(τ  and )2(τ , and the 

latency τinf for the network with infinite buffers are plotted in Figure2. 

 

A remarkable result is that the actual latency τ is considerably smaller than )1(τ for  

λ<0.6λ c r i t ,  and close to, but slightly smaller than 
)2(τ  for λ < 0.6λcrit. The reason for this 

paradoxical behavior as that in the first-order approximation (independent queues) the 

probability of having a pair of neighboring nodes both in state 1, namely, p11 = p1
2
 is 

substantially larger than in the reality: a pair (11) is unstable at small λ and most probably 

will become (10) pair of states at the next time interval, since a node in state 1 does not 

accept messages. Thus, states 0 and 1 negatively correlated for small λ and positively 

correlated for large λ (λ > 0.85 λcrit). We are tempted to compare this phenomenon with the 

antiferromagnetic-ferromagnetic transition in solid-state physics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The inverse average latency τ as a function of the network load λ. Red solid line: 

the first order approximation 
)1(τ (1); green dashed line: the second order approximation 

)2(τ
(4); blue line with bullets: experimental data; orange dotted line: theoretical values for 

infinite buffers given by (6). 
 

The network behavior near the critical point displays a pattern of the second order phase 

transition. The average latency τ  follows a power law:  

 τ (λ ) = α(λcrit − λ)
−β

,                   (7) 

where λcrit is the critical network load and β is the critical exponent.  

 

The data from our simulation with distance between the source and destination l = 5 hops 

yield λcrit = 0.09981, α = 4.891 ± 0.056, and critical exponent β = 0.2070 ± 0.0094.  
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2.2. Buffer limit m = 2, Model 1 

 

In the case of the network with buffer capacity m = 2 we consider two models: 

1. A node does not accept messages and does not generate messages when n = 1 or n = 2. 

This model is analyzed in the present section (Section 2.2).  

2. A node does not accept messages when n  = 1 or n = 2, and does not generate messages 

when n = 2. This model is analyzed in Section 2.3. 

 

2.2.1. First-order probability distribution 
 

Under the assumptions described above, only a router with no messages can accept incoming 

message, or generate a message with probability λ. State diagram with transition probabilities 

for this model is shown in Figure 3. 

 

 

 

 
 

 

Figure 3. The Markov chain for buffer limit m = 2, model 1. 
 
 
From system of the flow balance equations 
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By comparing the expression for λ(1)

act and τ(1)
 for this model and for the model of network 

with buffer limit m =1, one can see that the first-order approximation gives a smaller value of 

λ(1)
act, and, therefore, the larger latency τ 

(1)
  for m = 2 when λ < 0.4 λ(1)

crit, but the opposite is 

true for larger values of λ. The reason for that is that λ(1)
crit (m = 2) > λ(1)

crit (m = 1). 

       

2.2.2. Second-order probability distribution 
 

The second-order approximation becomes more challenging for this model comparing to the 

second-order approximation described in Section 2.1.2. Now the state transition diagram has 

nine states, which are combined states of two neighboring nodes. Note that the states are not 

symmetric, since the messages are always sent from left to right. The global balance 

equations for such Markov chain as well as probabilities of combined states and marginal 

probabilities  (p0, p1, p2) are too monstrous to present here.  The equation for λ to be solved 
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to find λ(2)
crit is of degree 12 (!). Solving it numerically for 

nonnegative root: λ(2)
crit = 0.13932314. The expression for the actual load 

form as in the first-order approximation but 

the average queue length is n

.2 21
)2(

ppn +=  

Other second-order characteristics are given below (11)

 

2.2.3. Numerical results 
 

The approximations for the average queue length 

values are shown in Figure 4.

 

Figure 4. The queue length 

approximation )1(
n (9); green line: the second order approximation 

As in the previous model (Section 2.1.3), the second order approximation gives an excellent 

prediction for the network behavior up to the moment when network becomes saturated. 

Network goes to the saturation state not only much

approximations predict, but it does so abruptly, sharply departing from the second

approximation curve. Unlike the previous model, there is no continuous transition to the 
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is of degree 12 (!). Solving it numerically for l=5, we obtain the smallest real 

0.13932314. The expression for the actual load λ(1)

order approximation but expression for p0 is different. Correspondingly, 
)2(

n : 

       

order characteristics are given below (11) 

The approximations for the average queue length )1(
n  and )2(

n , as well as experimental 

in Figure 4. 

 
. The queue length n  as a function of the network load λ. Red line: the first order 

(9); green line: the second order approximation )2(
n (10); blue line with 

bullets: experimental data. 
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As in the previous model (Section 2.1.3), the second order approximation gives an excellent 

prediction for the network behavior up to the moment when network becomes saturated. 
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saturation. The picture we have here closely resembles a liquid-gas first-order phase 

transition.  

Close to the critical point, the network behavior is very unstable: in one experiment, network 

goes to saturation; next time, even when the network load is larger then before, it does not 

show any sign of reaching the saturation state (Figure 3). Therefore, in this case we have the 

first order phase transition. We can, however, roughly estimate the critical load as λcrit = 

0.0546. 

 

2.3. Buffer Limit m = 2, Model 2 

 

In this section we consider the second model for the buffer capacity m=2. Here a node can 

generate a message when there is one message in the buffer (state 1), but it does not accept 

messages when n = 1 or n = 2. The Markov chain for this model is shown in Figure 5. 
  

 

 

 

 

 

 

 

Figure 5. The Markov chain for buffer limit m = 2, model 2. 

 
The model was described in details in [13].  The second-order probability distribution was 
not possible to obtain. Using the first-order analysis, we received the next expressions for 
actual load, average queue length and latency: 
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It can be seen that numerical data follows the theoretical prediction very closely until 

network load reaches value λ ≈ 0.0345. Up to this point, the data from experiments show 

even a slightly better network performance (smaller queue length and latency) when the first-

order approximation predicts. However, numerical experiments show a sharp increase in the 

average queue length (Figure 6) just before the network reaches saturation and long before 

we can expect the critical transition according to the mean field theory. 

 

Large fluctuations in the number of messages in the network  (Figure 8) and in the number of 

saturated buffers were observed using this model. The transition of the network to the 

saturation phase shows characteristics of the second-order phase transition, despite the fact 

that this transition is more abrupt then those described in Section 2.1. This is dramatically 

different from model 1 described in the previous section, which has a first-order phase 

transition. 
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By comparing model 2 for the 

(m = 1), one can see that increasing the buffer capacity does not necessarily lead to defer the 

saturation point. On the contrary, the former model reaches the saturation state under 

network load almost three times smaller than the latter. The explanation of this fact is that in 

model 2 a node can generate messages in both state 0 and 1, rather than in state 0 only, as in 

Section 2.1, which results in a larger effective load.

 

Figure 6. The queue length 

approximation 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The inverse average latency 

first order approximation

The shape of the latency curve (Figure 7), the fluctuation patterns (Figure 8), and the 

formation of domains of different phases speak in favor of a continuous (second

phase-transition. The empirical data on latency agree very well with a power law (7). 

0
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

In
v
e
rs

e
 la

te
n
c
y
 1

/ τ

Proceedings of the 2016 IAJC-ISAM  Joint International Conference
ISBN 978-1-60643-379-9 

By comparing model 2 for the buffer limit m = 2 described here with model from Section 2.1 

= 1), one can see that increasing the buffer capacity does not necessarily lead to defer the 

saturation point. On the contrary, the former model reaches the saturation state under 

d almost three times smaller than the latter. The explanation of this fact is that in 

model 2 a node can generate messages in both state 0 and 1, rather than in state 0 only, as in 

Section 2.1, which results in a larger effective load. 

 
ue length n  as a function of the network load λ. Red line: the first order 

 )1(
n (12); blue line with bullets: experimental data.

 

 

. The inverse average latency τ as a function of the network load λ

first order approximation )1(τ (12); blue line with bullets: experimental data.

 

The shape of the latency curve (Figure 7), the fluctuation patterns (Figure 8), and the 
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Calculations for l=5 yield λcrit = 0.03536, α =1.775 ± 0.028, and a critical exponent β = 

0.2026 ± 0.0095 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Number of messages in the network taken at every 100 clock cycles, λ = 0.03535,    
l = 5 hops. Blue line: number of messages in the network averaged over 100 time slots; green 

line: number of messages in the network taken every 100 time slots. 
 

3. Two-Dimensional Torus Topology 

 

We considered a 16 × 16 toroidal square lattice network. We assume that messages are 

always routed along the shortest path to the message destination, but we do not use static 

routing (there is no fixed path assigned to the message).  When a router receives a passing 

message and there is a choice between two possible buffers to keep the message, one of the 

buffers is chosen at random. Therefore, in the case of two-dimensional torus network 

topology and finite buffers, we elected to make the decision, whether to send a message to a 

neighboring node, based not on the queue in any single buffer at the next node along the 

message path, but rather on the total number of messages in the neighboring router. The 

limits on total number of messages held in the router have been set equal to 8 and 20.  We 

assumed that router stops accepting incoming messages once it accumulates (m − 4) 

messages. Locally generated messages are generated individually and independently for all 

four directions, and once router accumulates m messages it stops generating messages. 

Results are shown in Figure 9 and 10. Red line presents the theoretical prediction for 

networks with infinite buffers and 2-dim torus topology [17] given by 
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Figure 9. The queue length n  as a function of the network load λ. Red line: theoretical 
values for infinite buffers given by (13); blue line with bullets: experimental data for router 

capacity equal 8; green line with crosses: experimental data for router capacity equal 20. 
 

Surprisingly, until the network load comes close to the saturation value, the network behaves 

as if there was no buffer limit.  We can see an excellent agreement between theoretical 

prediction and simulation results, as well as no difference in network performance for 

networks with different total router capacities up to their critical loads. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 10. The latency τ as a function of the network load λ. Red line: theoretical values for 
infinite buffers given by (14); blue line with bullets: experimental data for router capacity 

equal 8; green line with crosses: experimental data for router capacity equal 20. 
 

The simulations show a sharp transition from the steady state regime to the saturated state for 

both router capacities.  Therefore, the in case of torus topology and finite buffers, the 

network behaves as if it undergoes a first-order phase transition. 
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4. Conclusions  
 

In this paper we analyzed the networks with finite buffers and proposed a few theoretical 

models.   For small buffer size m = 1 and m = 2, both first-order probability distributions 

(independent queue approximation) and second-order distributions (joint probabilities of 

pairs of neighboring nodes) were obtained. The results show that theoretical predictions 

given by the second-order approximation provide a better description of the network 

behavior compared to the first-order (mean field) approximation. But theoretical analysis, 

even for small value of m, proved to be very challenging, especially for the second-order 

approximation. Simulations data demonstrate the emergence of long-range dependences 

between nodes, far exceeding the “interaction radius” l when the network reaches the critical 

region. The most interesting observation is that the network shows both first-order and 

second-order phase transitions. The type of the phase transition depends not only on the 

buffer limit, but also on the assumptions for the message generation. In particular, with the 

buffer limit m = 2, we observed a second-order phase transition in model 1, while model 2 

has a first-order transition. The second-order phase transitions are characterized by non-

trivial values of critical exponent. An interesting feature of the first-order phase transitions is 

that the network behavior follows the second-order approximation (for the ring topology) and 

“mean field” approximation for networks with infinite buffers (for the torus topology) closely 

until the load reaches the critical value. When it happens, network goes to the saturation state 

abruptly. It is very difficult to predict when it can happen even from the experimental data: 

there are no significant increases in the average latency or queue length right before the 

critical point. Only the observation of the fluctuations of the average number of the messages 

in the network during the simulation can serve as an indication that the network is close to 

saturation. These fluctuations increase both in the amplitude and in the “wavelength” just 

before the critical point. 

 

An interesting task for the future studies would be to find out how a system with finite 

buffers “approximate” system with infinite buffers (which has a second-order phase 

transition) with the increase of buffer size. 
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