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Abstract 

 

This paper presents theoretical and numerical results for the performance of a multiprocessor 

network modeled as a ring and as a toroidal square lattice of nodes with local processors that 

generate messages for output ports/buffers. The output buffers are assumed to have infinite 

capacity and service time is deterministic. Two models are considered. One assumes that 

every processor generates messages with rate λ per time slot and per output port/buffer. The 

other model considers that the generation rate of a node depends on the intensity of the flow 

of arriving messages. Explicit expressions for the distribution of queue lengths, the average 

number of messages in the buffers, the average latency and the critical network load 

depending on distance between the source and the destination are obtained. Simulation 

results show excellent agreement with theoretical predictions based on the assumption of 

independent queues. 

 

1. Introduction 

 

Modern massively parallel computers are characterized by a scalable architecture. These 

computers offer corresponding gains in performance as the number of processors is 

increased. Such computers often consist of self-contained processing nodes, with associated 

memory and other supporting devices. This design approach has many advantages. The 

repetition of identical components leads to scalability, modularity, greater reliability, and 

opportunities for fault tolerance. However, parallel computing in such systems requires 

extensive communications between otherwise independent nodes so that data and instructions 

are redistributed periodically to keep all processors busy performing useful tasks. Because 

memory is not shared between node processors, interprocessor communications are achieved 

by passing messages between nodes through a communications network. This network is 

implemented as a set of interconnected routers, each connected to its local processor. Several 

of the most advanced supercomputers, such as Sequala (BlueGene/Q , IBM), Titan (Cray 

XK7), and Trinity(Cray Xc40), have a multy-dimensional toroidal interprocessor network 

topology. This implementation of a network reduces the path length between nodes and 

simplifies routing algorithms for static or dynamic routing. 

Many papers (see, e.g., [1, 20]) have been devoted to analyzing computer communication 

networks as networks of queues. The first most important result was obtained by Jackson. In 
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[3], published in 1963, he proved that for an open network of single-server queues with 

exponential arrival/departure rates “the equilibrium joint probability distribution of queue 

lengths is identical with what would be obtained by pretending that each individual service 

center is a separate queuing system independent of the others” (p.132). Subsequently, 

Gordon and Newell [4], and Buzen [5]  have shown that the state distribution for the 

M=M=m queuing network has a product form for the first-come-first-served (FCFS) queuing 

discipline. (The M=M=m queuing network consists of nodes that have a Poisson flow of 

incoming messages, exponential distribution of service time, and m servers.) The Baskett, 

Chandy, Muntz, and Palacios (BCMP) theorem [6] extends this property of the state 

distribution for cases where the service rate is not necessarily exponential, but has a 

distribution with a rational Laplace transform, and the queuing discipline is one of the 

following four cases: FCFS, processor sharing (PS), infinite server (IS), or last-comefirst-

served (LCFS). For FCFS, the service time distribution must be a negative exponential. 

Subsequently [7-9], three other classes of networks with exponential service times have been 

shown to have product form distributions. Networks with this property have been analyzed 

further in [10-14]. Recently, efforts of many researches focused on critical phenomena in 

computer communication networks [21-31]. Congestion and other phase transitions were 

observed and analogies with statistical mechanics were considered. 

 

This paper presents a model of a multiprocessor network in the form of a ring and a 2-

dimensional toroidal (wrapped-around) square lattice. The operation of the network is 

presented as a sequence of discrete time intervals (clock cycles). The specific features of the 

model are different from those considered in the literature. In particular, the service time is 

deterministic and, hence, does not have a rational Laplace transform. We obtain theoretical 

and numerical (simulation) results for the performance of the model. The theory is based on 

the assumption of independent queues. The distributions of the number of messages in each 

queue and of the latency (the time elapsed between message generation and its arrival to the 

destination), as well as the average size of the queue and the expected value of the latency as 

functions of the network load are obtained. The results show remarkably close agreement 

between the theory and simulation that demonstrates the validity of the independent queues 

hypothesis.  
 

2. The model 
 

2.1. One-dimensional case: ring topology 
 

Each node in our model consists of a local processor, a router, and buffers of infinite 

capacity. In one-dimensional case each node is connected to two neighbors: the left one and 

the right one, and, respectively, has two output ports/buffers. The following conventions are 

made in the model. 

1) At any clock cycle a message intended for each of the output ports can be generated by 

the local processor at every node, independently of others, with a constant probability �. 

2) All messages are to be sent to a destination at distance exactly l hops from the source. 

(The distance between neighbors is equal to one hop.)  

3) Any message generated at the node or arriving from a neighboring node is place 

immediately in the output buffer in the direction of the shortest path to the destination.   
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4) At any clock cycle, if a buffer is not empty, exactly one message is transferred to the 

neighboring node, and it appears at that node at the next clock cycle. Thus, the service 

time is equal to one clock cycle. 

5) If there are more than one message in the buffer, a message to be transferred is chosen at 

random with equal probabilities (the so called SIRO (service-in-random-order) queueing 

discipline). 

6) At the time (clock cycle) when a message reaches its destination, it is immediately 

consumed and leaves the network.  

 

2.2. Two-dimensional case:  torus 

 

In the two-dimensional case each node has four neighbors and, correspondingly, four output 

ports/buffers. In addition to the conventions listed in section 2.1 the following rules are 

accepted. 

1) At any clock cycle a message intended for each of the output ports is generated 

independently at every node with probability λ. 
2)  Each of 4l destinations at distance l from the source has the same probability to receive a 

message. 

3) If there is a choice between intermediate nodes on a shortest path to the destination, each 

of them is chosen with probability ½. 

4) Two different queueing disciplines are considered: 

SIRO and the priority discipline in which a newly generated message is sent first (new-

first-order, or NFO). 

 

It is seen that our system differs from networks for which the product form of the limiting 

state probabilities was proved earlier in a number of characteristics. 

1. Time is discrete, and arrivals occur with specific probabilities, depending on the distance 

l (non-Poisson and non-binomial), as given below by (12). 

2. We consider both SIRO and NFO queueing disciplines.  

3. The service time is deterministic and does not belong to the class of service time 

distributions with rational Laplace transforms. 

 

In general, our choice of models was dictated by two opposite considerations. On one hand, 

the models are supposed to reflect some important features of the real-life situation. In 

particular, the assumption of the deterministic service time is quite natural for homogeneous 

messages of the same volume. This case is interesting for being researched, since it does not 

satisfy the conditions for which Jackson theorem is proved. On the other hand, the model 

should be simple enough to allow a full-fledged theoretical analysis that would reveal 

fundamental properties of the communication process in the network, in the most general 

closed form as functions of the parameters of the process. (In particular, it was important to 

fix the distance between the source and destination as one of such parameters). Of couse, this 

task cannot be accomplished by computer simulation. 
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3. Theoretical analysis 

 

3.1. The ring 

 

We consider the time evolution of the queue at each node buffer as a Markov chain where the 

next state depends on the present state of the buffer, while assuming the steady- state 

probability distribution for states of all other buffers. This approach is similar to the “mean 

field theory” in statistical physics. Our goal is to obtain explicit analytical expression for the 

distribution of the number of messages in a buffer at the steady state (equilibrium) of the 

network, as it depends on the load λ, and to determine the critical value of the load that 

results in saturation. 

 

Let us call the grade of a message the number k of hops the message has made towards the 

destination. For the chosen value of the parameter l, there exist messages of l different grades 

in the system: k = 0,1,…, l - 1, since the messages of grade l disappear from the system. Note 

that a message of grade k that leaves a node appears at the next node as a message of grade 

k+1. The state of a buffer can be described as a vector (n0, n1,…, nl-1) where nk is the number 

of messages of grade k. Denote the limiting (steady-state probabilities) of a state by p(n0, 

n1,…, nl-1). Denote 
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According to SIRO discipline, the probability that a message of grade k will be transferred is 

equal to nk /n. Under the steady-state condition, at any clock cycle, the expected number of 

messages generated at a node should be equal to the expected number of messages of grade 0 

that leave the queue. On the other hand, these messages have grade 1 when they enter the 
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Since exactly one message is transferred from any state except the zero state it follows from 

(2) that  
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Hence,  

p(0,0,…,0) = 1- lλ .                          (4) 

It can be shown that the limiting probabilities of all states with the same total number n of 

messages of all grades are equal:  
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where n is given by (1),  
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lm  is the number of different states with n messages, and 

P(n) is the total probability of all states with n messages.   

 

After simplification, the balance equations for the limiting probabilities are 
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where P(0) =  p(0,0,..,0) is given by (4). 

Solving the system of equations (6) we obtain: 
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Hence, the distribution of the size of the queue is geometric starting with n =2. 

   

Finally, the average number of messages in a queue is 
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It follows that the critical load is 

l
crit

1
=λ                                   (10) 

and the critical exponent at (8) and (9) is equal to 1. 

 

3.2. The torus 

 

It is shown that in the two-dimensional case, alike the ring case, the limiting probabilities of 

all states with the same total number n of messages of all grades are equal. Therefore, the 

equations for limiting probabilities can be written in terms of P(n), where n is the total 

numbers of messages in the buffer. However, an important difference between 1-dim and 2-

dim cases is that, while in the Markov chain for 1-dim case there are transitions from a state 

with n messages only to states with n − 1, n, and n + 1 messages n ≥ 1), in the 2-dim case 
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there exist transition from a state with n messages to the states with n − 1, n, n + 1, n + 2, and  

n + 3 messages (n ≥ 1). Interestingly, the balance equations for P(n) turn out to be the same 

for both SIRO and NFO. 

 

Denote by ai (i = 0,1,2,3) the probability that exactly i messages arrive to a particular buffer 

from neighboring nodes during one clock cycle. It follows from the description of the model 

given above that 
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Since a message intended for this buffer can be also generated independently with probability 

λ by local processor, the probability of the total number of arrivals being equal i is 

    ).4,3,2,1,0(      )1(1 =−+− iaa ii λλ                  (12)  

Here a-1 = a4 = 0. 

 

Then, after simplification, the balance equations for each buffer can be written as follows: 
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The characteristic equation is cubic:  
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The general solution of system (13) has a form  
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where A, B, and B
*
 are functions of λ and l; A is real, while B and  B

*
 are complex conjugate; 

x1 is the real root of equation (15), and x2, x3  are two complex conjugate roots of the 

characteristic equation. In particular,  
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Again, the saturation point is 
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and the critical exponent is equal to 1.

 

4. Simulation 
 

4.1. The ring 
 

The simulations have been done for rings of length 8 and 16 for several values of 

with l = 2. After achieving the steady

clock cycles at 64 and 256 nodes. 

The probability distribution of the

critical message generation rate is shown in 

number of messages as a function of the load 

inverse values of the latency 

 

 

Figure 1.  Probability distribution of the queue length; 

Solid line: predicted theoretical values; circl
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Explicit expressions for larger n are too complex to be written here. However, with some 

technical contrivances, we have been able to obtain rather simple explicit expressions for the 

of messages in the buffer, and the average latency τ: 

,λl             

.             

Again, the saturation point is  

           

and the critical exponent is equal to 1. 

The simulations have been done for rings of length 8 and 16 for several values of 

2. After achieving the steady-state regime, the simulation was run for about 50,000 

clock cycles at 64 and 256 nodes.  

The probability distribution of the number of messages (queue length) n for l

generation rate is shown in Figure 1. The inverse value n
1  of the average 

number of messages as a function of the load λ is shown in Figure 2. Figure 

inverse values of the latency τ
1

 . 

 
 

.  Probability distribution of the queue length; l = 2, λ = 0.45, ring length: 8 nodes. 

Solid line: predicted theoretical values; circles: numerical simulation resul. 

Conference 

are too complex to be written here. However, with some 

technical contrivances, we have been able to obtain rather simple explicit expressions for the 

            (16) 

            (17) 

           (18) 

The simulations have been done for rings of length 8 and 16 for several values of l starting 

state regime, the simulation was run for about 50,000 

l = 2 and near-
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= 0.45, ring length: 8 nodes. 
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Figure 2.  The inverse length of the queue for 

numerical simulation results for ring length 8 and 16 are shown by crosses and circles, 

 

 

Figure 3.  The inverse latency as a function the network load, 

values given by (9); numerical simulation results for ring lengths 8 and 16 are shown by 

crosses and circles, respectively. 

 

4.2. The torus 

 

The simulations have been done for 16

The total number of 256×4 buffers have been observed at 15,000 points in time with intervals 

starting with 10 and up to 400 clock cycles to guarantee the independence of the samples. 

Sufficient time was allowed for the network to come to the steady

samples were taken. 

 

The probability distribution of the number of messages 

 

1/�� 
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.  The inverse length of the queue for l=2. Solid line: theoretical values given by (8); 

numerical simulation results for ring length 8 and 16 are shown by crosses and circles, 

respectively. 

 

 

.  The inverse latency as a function the network load, l=2. Solid line: theoretical 

values given by (9); numerical simulation results for ring lengths 8 and 16 are shown by 

crosses and circles, respectively.  

The simulations have been done for 16×16 toroidal square lattice for distances 

4 buffers have been observed at 15,000 points in time with intervals 

starting with 10 and up to 400 clock cycles to guarantee the independence of the samples. 

Sufficient time was allowed for the network to come to the steady-state regime before 

The probability distribution of the number of messages ��		in one buffer is given in 

λ (probability message generation) 
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=2. Solid line: theoretical values given by (8); 

numerical simulation results for ring length 8 and 16 are shown by crosses and circles, 

=2. Solid line: theoretical 

values given by (9); numerical simulation results for ring lengths 8 and 16 are shown by 

16 toroidal square lattice for distances l = 2 and l = 5. 

4 buffers have been observed at 15,000 points in time with intervals 

starting with 10 and up to 400 clock cycles to guarantee the independence of the samples. 

ate regime before 

in one buffer is given in Figure 4.  



Proceedings of the 2016 IAJC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Probability distribution of the queue length; 

Solid line: predicted theoretical values; crosses: numerical simulation results.

Figure 5 shows the inverse value of the average number of messages 

the load λ. The standard deviations of the mean 

the large samplings size, they are too small to be shown in the plot.

 

Figure 5.  The inverse length of the queue for 

(16); numerical simulation results for torus of
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.  Probability distribution of the queue length; l = 5, λ = 0.199, torus 

Solid line: predicted theoretical values; crosses: numerical simulation results.

 

5 shows the inverse value of the average number of messages n
1 , as a function of 

. The standard deviations of the mean values have been calculated, but because of 

the large samplings size, they are too small to be shown in the plot. 

 
.  The inverse length of the queue for l=5. Solid line: theoretical values given by 

(16); numerical simulation results for torus of 256 nodes are shown by crosses.

6 shows the inverse values of the latency τ
1
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0.199, torus size: 256 nodes. 

Solid line: predicted theoretical values; crosses: numerical simulation results. 

, as a function of 

values have been calculated, but because of 

=5. Solid line: theoretical values given by 

256 nodes are shown by crosses. 
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Figure 6.  The inverse average latency as a function of load 

values given by (17); numerical simulation results
 

5. Discussion of results 

  

The obtained results show an excellent agreement between the theory and numerical 

experiments. Thus, the presented theoretical model of the network as a system of 

independent queues provides

remarkable, since, as pointed out in Sec. 2, our system have properties different from those 

for which the product form of the state probability distribution has been proved. 

 

The saturation phenomenon in 1

phase transition with a critical exponent equal to 1. From the standpoint of statistical physics, 

this means that the mean field theory is exact for the types of networks considered.

contract with physical systems where critical phenomena are observed only in the 

“thermodynamic limit”, the saturation in networks occurs for finite systems and, moreover, 

the characteristics of the network performance seemingly do not depend on the si

system provided that the distance 

seen that in both 1-dim and 2

order). The critical load is inversely proportional to the distanc

destination. This fact is not surprising, since the utilization of every link in the network (the 

fraction of time when the link is busy) is 
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6. Conclusion and future work
 
The results of the paper demonstrate the existence of a deep analogy between phenomena in 
communication networks and in systems studied by statistical ph
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the analysis and control of the processes in communication networks. The other possible 
extension of our research is application of a similar approach to other network topologies, 
sets of parameters, queueing disciplines, etc. 
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